Absolute quantitation of bacterial biofilm adhesion and viscoelasticity by microbead force spectroscopy.

نویسندگان

  • Peter C Y Lau
  • John R Dutcher
  • Terry J Beveridge
  • Joseph S Lam
چکیده

Bacterial biofilms are the most prevalent mode of bacterial growth in nature. Adhesive and viscoelastic properties of bacteria play important roles at different stages of biofilm development. Following irreversible attachment of bacterial cells onto a surface, a biofilm can grow in which its matrix viscoelasticity helps to maintain structural integrity, determine stress resistance, and control ease of dispersion. In this study, a novel application of force spectroscopy was developed to characterize the surface adhesion and viscoelasticity of bacterial cells in biofilms. By performing microbead force spectroscopy with a closed-loop atomic force microscope, we accurately quantified these properties over a defined contact area. Using the model gram-negative bacterium Pseudomonas aeruginosa, we observed that the adhesive and viscoelastic properties of an isogenic lipopolysaccharide mutant wapR biofilm were significantly different from those measured for the wild-type strain PAO1 biofilm. Moreover, biofilm maturation in either strain also led to prominent changes in adhesion and viscoelasticity. To minimize variability in force measurements resulting from experimental parameter changes, we developed standardized conditions for microbead force spectroscopy to enable meaningful comparison of data obtained in different experiments. Force plots measured under standard conditions showed that the adhesive pressures of PAO1 and wapR early biofilms were 34 +/- 15 Pa and 332 +/- 47 Pa, respectively, whereas those of PAO1 and wapR mature biofilms were 19 +/- 7 Pa and 80 +/- 22 Pa, respectively. Fitting of creep data to a Voigt Standard Linear Solid viscoelasticity model revealed that the instantaneous and delayed elastic moduli in P. aeruginosa were drastically reduced by lipopolysaccharide deficiency and biofilm maturation, whereas viscosity was decreased only for biofilm maturation. In conclusion, we have introduced a direct biophysical method for simultaneously quantifying adhesion and viscoelasticity in bacterial biofilms under native conditions. This method could prove valuable for elucidating the contribution of genetic backgrounds, growth conditions, and environmental stresses to microbial community physiology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential lipopolysaccharide core capping leads to quantitative and correlated modifications of mechanical and structural properties in Pseudomonas aeruginosa biofilms.

Bacterial biofilms are responsible for the majority of all microbial infections and have profound impact on industrial and geochemical processes. While many studies documented phenotypic differentiation and gene regulation of biofilms, the importance of their structural and mechanical properties is poorly understood. Here we investigate how changes in lipopolysaccharide (LPS) core capping in Ps...

متن کامل

Quantitative Characterization of the Influence of the Nanoscale Morphology of Nanostructured Surfaces on Bacterial Adhesion and Biofilm Formation

Bacterial infection of implants and prosthetic devices is one of the most common causes of implant failure. The nanostructured surface of biocompatible materials strongly influences the adhesion and proliferation of mammalian cells on solid substrates. The observation of this phenomenon has led to an increased effort to develop new strategies to prevent bacterial adhesion and biofilm formation,...

متن کامل

Structural, Surface, in vitro Bacterial Adhesion and Biofilm Formation Analysis of Three Dental Restorative Composites

This study was conducted to investigate the relationship between dental materials and bacterial adhesion on the grounds of their chemical composition and physical properties. Three commercially available dental restorative materials (FiltekTMZ350, FiltekTMP90 and Spectrum®TPH®) were structurally analyzed and their wettability and surface roughness were evaluated by using Fourier Transform Infra...

متن کامل

Nanoscience and Nanometrology

Bacterial adhesion and biofilm formation are important phenomena which can produce both detrimental and beneficial effects in several fields. Research is thus focused on the modulation of the properties of material surfaces in order to design and develop substrates able to control bacterial adhesion process, which is the first trigger event of biofilm formation. Several theoretical predictions ...

متن کامل

Osteopontin adsorption to Gram-positive cells reduces adhesion forces and attachment to surfaces under flow

The bovine milk protein osteopontin (OPN) may be an efficient means to prevent bacterial adhesion to dental tissues and control biofilm formation. This study sought to determine to what extent OPN impacts adhesion forces and surface attachment of different bacterial strains involved in dental caries or medical device-related infections. It further investigated if OPN's effect on adhesion is cau...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 96 7  شماره 

صفحات  -

تاریخ انتشار 2009